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about their properties, along with tools that can be used to validate correctness and performance 
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1     Introduction 

This is the linal tochiiiccti report for Phase I STTR project thai focused on oxlcnsians to the TIOA 
(Timed Input/OutpuL Aulomata) language and framework as well as its companiuii system: Tempo. 
Specifically, il describes the advancements m the theory of TIOA and the addition of a language 
extension and software tool back-end aimed at assisting users of the methodulogy when turning 

their attention lu the implementation aspects of their disUibuted system. The new extension makes 
it possible to specify the characteristics of a deployment environment at the TIOA level with model 
annotations. The annotations are then used by Tempo to derive a combinatorial optimization model 
that produces an optimal (with respect to an objective; specified in the annotations) deploymenl 
scenario. The back-end tool relies on state-of-the-art combinatorial optiniizatiou tool to solve the 
optimization problem. The Tempo tool-chain now offers an end-to-end solution starting with the 
specification of a distributed algorithm to its optimal deployment on a target platform. 

1.1     The problem and our solution 

Challenges in developing distributed systems. Developing dependable distributed systems 
for modern cumputing platforms continues to be challenging. While the availability of distributed 
middleware makes feasible the construction of systems thai run on distributed platforms, ensuring 
that the resulting systems satisfy specific safety, timing, and fault-tolerance requirements remains 
problematic. The middleware services used for constructing distributed software are specified in- 
formally and without precise guarantees of efiiciency. timing, scalability, cninpositionality, and 
fault-tolerance. Even when services and algorithms are specified fonnally, rigorous reasoning about 
the specifications is often left, out of the development, process. 

As contemporary distributed systems continue to grow in complexity and sophistication in many 
domains, these systems are rcfphrnd to have formally-specified guarantees of safety, performance, 
and fault-tolerance. Currenl software-engineering practice limits the specification of such rcquUe- 
ments to informal descriptions. When formal specifications are given, they are typically provided 
only for the system interfaces. The specification of interfaces alone stops far short of satisfying the 
needs of users of critical systems. Such systems need to be equipped with precise specifications 
of their semantics and guaranteed behavior. When a system is built of smaller components, it is 
iniportaiit to specify the properties of the system in terms of the properties of its components. 

We view formal specification and analysis as valuable tools that should be at the disposal of 

the developers of distributed systems. 
Furthermore, once a system is specified, the implementation efforts are often informally con- 

nected to the specification which implies that the guarantees offered by the format tools may not 
carry over to the implementation. Additionally, the deployment of the implementation on an ac- 
tual platform raises its own set of challenges to meet the timing, fault-tolerance and scalability 
requirements. 

It is thus desirable to offer an integrated approach that covers the entire process, from design 
to implementation and deployment of the resulting distributed system. 

Our approach to modeling and analysis of complex distributed systems. This project 
developed techniques and tools that are designed to be used in constructing provably correct dis- 
tributed software. At the specification level. It leverages the IOA formalism (named after In- 
put/Output Automata) and its companion toolset Tempo.    IOA use mathematical models   -in 
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parlicular, iuieraciiiig slaLf1 macliines-as an integral part of the software developmeiil process. 
The stages of lliis process within the scope of our frainework are as follows. Abstract requireuienis 
for a distributed system arc specified using a modeling language. These specifications arc then rc- 
liiied through multiple levels of abstraction. Each relinement step is fuin:ally validated. Validation 
techniques include a combination of simulation, model checking, and Ueareni proving. The goal 
of the refinement process is to produce sufficiently detailed models that (a) can ultimately be used 
to generate distributed code automatically, and that (b) are guaranteed to be consistent with the 
modeled system requirements. 

To support automated formal methods for constructing or analyzing systems, a modeling lan- 
guage musi rest on a solid mathematical foundation. The I/O automaton mode! [20] and its timed 
extensions 113] provide such a foundation. I/O automata have been used to describe and verify 
many distributed algorithms and systems (see, for example, (1G]), and Tinted I/O Automata have 
been used to model timing-dependent distributed algorithms and real-time control systems [13]. 

The Tempo language uses the Timed I/O Automata to describe interacting state machines. 
They are nondelermimstic. which makes them suitable for describing syslems hi their most general 
forms. The state of a TIOA can change in two ways; discrete tmnsilkms, which are labeled by 
discrete actions, change the state instantaneously, whereas Imjccloricn are functions that describe 
the evolution of the state variables over intervals of time. 

Target systems. Many types of systems are currently developed using software engineering 
methodology that is less than adequate in its ability to handle formal modeling and analysis of 
complex distributed software, and wc anticipate that several specific types of systems will benefit 
from being designed within our proposed framework. The types of systems include: 

• Distributed data systems: data collection, management, dissemination: consistent replicated 
shared-data systems. 

• Communication: group comimmicat ion systems, broadcast and mullJeasl systems with quality- 
of-service guarantees. 

• Coordination and control: traffic management, industrial process control, automated manu- 
facturing systems, transportation (e.g., TCAS, traffic collision avoidance system used in civil 
aviation). 

Many such syslems involve specialized distributed platforms, such af networks of sensors and 
mobile ad hoc networks. 

1.2    Summary of project objectives and accomplishments 

With the ultimate goal of providing a more complete formal methodology and associated tools to 
substantially improve the state of the art in developing software for complex distributed systems, 
the project objectives encompassed the following. 

Theory and Methodology. In developing service definitions and algor thms for distributed sys- 
tems, analyzing the resulting specification, and generating code from speci:ications for such systems. 
the results only make sense if they are ultimately based on a sound underlying mathematical model. 
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Tiiis project uses interacting slate iiiachme models. Standard models like I/O (hipui/Ouipul) au- 
tomata and timed I/O automata provide the foundation for the Tempo language that we developed 
previously. However, some of the systems require richer models capable of describing complexities 
such as probabilistic and conLinuous behaviors. New models for particular kinds of timing and fail- 
ure behavior and corresponding analysis methods are also needed. Existing models that handle such 
features need to be improved and better integrated. Other extensions are needed to express con- 
straints for deploying systems defined in terms of the Tempo language in physical target networks, 
and for optimizing deployment over target networks based on various performance considerations. 
We collectively refer to these I/O automata models and the languages for system specifications 
in these models as Tempo*. In this project we have advanced the theory for such models, in 
particular the probabilistic extensions, we have extended the formal framework and methodology 
for analyzing system specifications, and deriving distributed code from such specifications, and we 
have prototyped languages for specifying complex distributed systems in such models. 

Our accomplishments in this area are presented in this report as follows. The probabilistic 
and hybrid extensions to the Input/Output Automata framework are presented in Section 3. The 
deployment-oriented augmentations of the Tempo framework are presented in Section 5. 

Modeling, Analysis, Code Generation, and System Deployment Tools. We performed 
research and feasibility studies needed Lo develop computer-aided design tools for analysis of com- 
plex distributed systems expressed in the Tempo* formalism and lo prototype such tools on the 
basis of the Tempo framework developed previously. New modeling and analysis tools and tool 
extensions thai are the result of our work include the following. The laiujuaijc pwecssor is a front 
end tool that will accept Tempo* specifications, perform static and type analysis, and produce 
intermediate output for use by other tools. The simulator is a tool designed to simulate execu- 
tions of Tempo* specifications and to provide linked simulations of pairs of specifications, where 
one specification gives an abstract definition and the other is a more concrete specification that is 
supposed to implement the abstract definition. 

Building on our prior work on code generation for distributed systems, we have explored for- 
mal approaches to code generation from Tempo* specifications, and prove theorems about the 
correctness of the resulting code. We prototyped tools for mapping Tempo* system specifications 
consisting of multiple automata lo target networks subject to distributed deployment constraints 
and efficiency and resource cousiderations, e.g., communication bandwidth, storage reqniremeius. 

and redundancy for fault-tolerance. 
Our accomplishments in this area are presented in this report as follows. An overview of and 

our latest refinements to the existing Tempo integrated development environment are presented 
in Sections 2 and 4. The tools and trauslaiors for dealing witli deployment problem of systems 
specified in Tempo are presented in Sections 5 and (i. In Section 8 we summarize our work on formal 
treatment of channel implemeniations as a part of our work towards code generation extensions. 

Applications: Evaluations and Feasibility. In order to evaluate the cffcclivcncss, scalability, 
and extensibility of our methodology and prototypes, we applied them to model and analyze repre- 
sentative systems. Compared to previous altempts to optimize the deployment of interesting sys- 
tems we have obtained substantial improvements using our integrated approach with constrained- 

programming based solutions. 
We present out accomplishments in Section 6 and 7. 
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1.3 Project team and academic partner institution 

Tlic project team over the duration of the effort included the following people: 

Laurent Michel, Ph.D., System Architect and PI 

Kaiicy Lymh, Ph.D., Chief Twtlmica] Officer ami Co-PI 

Alex Shvarlsnuui, Ph.D., Project Manager and Co-PI 

Carleton Coffrin, Sonior Software Kngincer 

Elaine Sonderegger. Graduate Researcher, Development 

Dilsun Kaynar, Tempo Consultant 

Our academic partner on this project was the University of Connecticut 

1.4 Publications 

In this section we list puljlicalions directly related to the project that were authored or co-authored 
by the project personnel. All publications are available on request. 

[Pl| R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N". Lynch, O. Pereira, and R. Segala. 
Analyzing Security Protocol Using Time-Bounded Task-PIOAs, juumul of Discrete 
Event Dynamic Systems (DEDS), Springer, volume 18, number 1, March 2008. 

[P2] Ran Canetti, Ling Cheung, Dilsun Kaynar, Nancy Lynch, and Oliviei Pereira. Modeling 
Bounded Computation in Long-Lived Systems. CONCUR S00S, Ccncurrcncy Tlicoiy, 
19t.h Intcnuitivnal Cuuferctice, pages 114  130, 2008. 

(P3] Chryssis Georgiou, Peter M. Musial, Alexaaider A. Shvarlsman, Elaine L. Soudereg- 
gcr: An Abstract Channel Spccihcation and an Algorithm Implementing ll Using Java 
Sockets. Procccdinijs of The Seventh IEEE Intcmationol Symijoshtm on Nelworkimj 
Conipvliny and Applicalions, NCA 200S, pages 211-219, 2008. 

{P4] Daniel Libcrzon, Sayan Mitra, and Nancy Lynch. Verifying Average Dwell Time of 
Hybrid Systems. To appear in ACM Tiunsuctions in Einbedded Cottputtny Systems. 

[P5] N. Lynch, L. Michel, and A. Shvartsman, "Tempo: A Toolkit for the Timed Inpui/Out- 
put Automata Eormalisnv', First Intcmational Conference on Sii ndution Toots and 
Techniques for Coninmniadions, Networks and Systems (SIMUToo-s 200S). Industrial 
Track: Simulation Works. CDROM, paper 3105, S pages, MarseiDes, Prance, March 

4-7, 2008. 

[P6] L. Michel, A. Shvartsman, E. Sonderegger and P. Van Hentenryckv "Optimal Deploy- 

ment of EvenUially-Serializable Data Services.1'. Procecdinys of the Fifth IntcrnatioJial 
Confemnce on Intcyration of AI and OR Tcchntqitcs in Construini Pwyrantminy for 
Combinalonal Optimization Problems, CPAIOR 2008.. Paris, France, May 20-23, 2008. 

[P7) L. Michel, A. Shvartsman, E. Sonderegger and P. Van Hentenryck "Optimal Deployment 
of Evenlnally-Serializable Data Services", Submitted to Annals of Operations Research, 
October, 2008. 

(The complete bibliography cited in this report is included after the mail, text.) 
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l.G    Document structure 

Scclion 2 presents the overall fianicwork at a high level, including tools dcscriplious; ami spcciliea- 
lion examples. In the rest of the report we describe in detail the Phase I work and our accomplish- 
ments. In Section 3 we describe the advances in extending the formal Input/Output Automata and 
Timed Input/Output Automata frameworks to include reasoning about probabilistic and hybrid 
systems. In Section 4 we lirst briefly review the architecture of the inlegraled Tempo iramewurk 
and focus in section 5.1 on the new annotations related to deploymenl issues. In Section G we 
present the translation module responsible for deriving combinatorial optimization models Iroin 
Tempo specifications. In Section 7 we discuss the optimizer back-end and illustrate its capabilities 
on the deploymeuL of a distributed system (Eventually Seriali'/able Data Services). In Section 8 we 
summarize our work on formal treatment of channel implementations as a part of our work towards 
code generation extensions. 

We conclude in Section 9. Bibliography completes this report. 

2    Tempo Toolkit for Timed Input/Output Automata Formalism 

Tempo is a formal language for modeling distributed, concurrent, and timed systems as collections 
of interacting state machines, called timed input/output automata. Tempo provides natural math- 
ematical notations for describing systems, their intended properties, and intended relationships 
between their descriptions at varying levels of abstraction. The Tempo Toolkit is an implementa- 
tion of the Tempo language and a suite of tools that supports a range of validation methods for 
descriptions of systems and their properties, including static analysis, simulation, and machine- 
checked proofs. This section gives an overview of the Tempo language and illustrates its utility on 
selected examples of importance to distributed computing. The focus of the presentation is on the 

Tempo tools. We quickly review the purpose of Timed I/O Automata and TEMPO language 2.1. 
the TEMPO toolset (Section 2.2), and briefly review an example in Section 2.3. 

2.1    What is the Tempo language? 

Tempo is a formal language for modeling distributed systems as collections of interacting state 
machines called Timed Input/Ouipitl Aulomalu [13]. Timed Input/Output Automata are often 
referred to as Timed I/O Aiilomala, or just TIOAs. The distributed systems in question may have 
timing constraints, for example, bounds on the time when certain events may occur, or bounds on 
the rates of change of component clocks. They may use time in significant ways, tor example, for 
timeouts, or for scheduling events to occur periodically. Timed I/O Automata formalism provides 
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good support for describing tlie.se constraints and capabilities. Timed anc nntimed I/O Antoniata 
iormalisms liavo hetin effectively used tor specifying nmnerons distributed a id concurrent algoritlnus 
[16]. The Tempo language provides simple formal notation for describii g Timed I/O Automata 
precisely, based on the pseudocode notation that has been used in many research papers. It also 
allows specilication of properties such as invariant assertions and rclatioi ^hips between automata 
at different levels of abstraction. The Tempo language is supported by an associated integrated 
development environment toolkit, also called Tempo, that provides an extensible framework sup- 
porting a range of integrated analysis and validation tools, including static analysis, simulation. 
model-checking, and theorem-proving. 

Many distributed systems involve a combination of computer components and real-world, phys- 
ical entities such as vehicles, robots, or medical devices. Systems iiivohmg interaction between 
computer and real-world components usually have strong safety, reliabilhy, and predictability re- 
quirements, stemming from Lite requirements of real-world applications. This makes il especially 
important to have good methods for modeling the systems precisely and analyzing their behavior 
rigorously. Tempo provides a simple, elegant, and powerful nuuhematical foundation for analyz- 
ing a wide variety of systems, and it can be used to model both computer and real-world system 
compoueuts, as well as their interactions. 

Tempo can be used to mode! practically any type of distributed sysUm, including (wired and 
wireless) communication systems, real-time operating systems, embedded systems, automated pro- 
cess control systems, and even biological systems. The behavior of these systems generally includes 
both discrete state changes and continuous state evolution; Tempo is cesigned to express both 
kinds of changes. 

The Tempo Toolkit was developed by VEROMODO Inc., with support provided by an AFOSR 
technology transfer grant. The beta releases of the Tempo Toolkit for LLnux, Windows, and Mac 
OS X platforms are available for download at www.veroiuodo.coin. 

Bariicr work on a toolkit supporting specification in (unl.iniod) Inpu"./Oul,pul Automata was 
performed at the MIT Theory of Distributed Systems group [9]. The prototype toolkit supported 
a simulator [6j. paired automata simulation [28], and simulations of composed automata [29]. 

2.2    Tempo language overview 

We now discuss the Timed I/O Automata formalism thai is the basis of Oe Tempo language, and 
summarize the capabilities of the toolkit. 

2.2.1    Timed I/O Automata 

The Timed I/O Automata [13] inathematical framework is an extension of the classical I/O Au- 
tomata framework [20, Ifi], which for many years has been successfulK used in the theoretical 
distributed computing research connmniity to specify and reason about disitribuLed and concurrent 
algorithms. I/O Automata are very simple interacting asynchronous state machines, without any 
support for describing timing features. Although they are simple. I/O Atujamata provide a rich set 
of capabilities for modeling and analyzing distributed algorithms. I/O Automata support descrip- 
tion of many properties that distributed algorithms are required to satisfy, and mathematical proofs 
that the algorithms in fact satisfy their required properties. These proofs are based on methods 
such as invariant assertions and cuinpositional reasoning. I/O Automata also stipport representa- 
tion of algorithms at different levels of abstraction, and proofs of consister cy relationships between 
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al^arilhm rcprcsonlalioiis ftl diffcicnl levels. Uccausc of these capabilities, I/O Automata have 
Ijeeit used fairly extensively for modeling and analyzing asynchronous distributed algorithms, and 
even for proving impossibility results about compulabiliLy in asynchrouous distributed settings. 

However, ordinary I/O Automata cannot be used to describe distributed algorithms that use 
time explicitly, for example, those that use timeouts or schedule events periodically. And they do not 
provide explicit support for describing timing constraints such as bounds on message delay or clock 
rates. Moreover, without support for timing, I/O Automata could not be used for other applications 
such as practical conmimncation protocols. These Ihnilations led to the development of Timed 
I/O Automata, which include new features—-most notably, Imjccioncs—Specifically designed for 
describing timing aspects of systems. 

Like ordinary I/O Automata, Timed I/O Automata are simple interacting state machines and 
have a well-developed, elegant theory, presented in [13]. Like I/O Automala. Timed I/O Automata 
provide a rich set of capabilities for system modeling and analysis. Methods used for analyzing 
timed I/O automata are essentially the same as those used for ordinary I/O automata: invariant 
assertions, compositional reasoning, and correspondences between levels of abstraction. 

2.2.2     The Tempo language and tools 

I/O Automata and Timed I/O Automata are fine mathematical modeling frameworks for dis- 
tributed systems and have been used, by hand, to describe and analyze distributed algorithms, 
communication protocols, and embedded systems. Yet, computer support could make these tasks 
quite a bit easier. The Tempo Language and Toolkit is an attempt at providing a broad set of tools 
to support these activities. 

The Tempo toolkit contains tools to support analysis of systems. These include a compiler that 
checks syntax and perform static semantic analysis; a simulator to produce and explore execution 
traces for an automaton; a translation module to the UPPAAI. model-checker [14|; and a translation 
module to the PVS interactive theovem-prover [27). The overall architecture of the Tempo toolkit 
has been designed to facilitate incorporation of other validation tools in the future. 

The Tempo language has a rather minimal syntax, which closely matches the simple semantics 
of the Timed I/O Automata mathematical framework. In fact, the mapping between a Tempo 
automaton description and the Timed I/O Automata that it denotes is pretty transparent. For 
example, an automaton's discrete transitions and continuous evolutions are described directly in 

Tempo, by 'transitions^ and 'trajectories", respectively. The minimality of the Tempo language 
does not limit its expressive power: Tempo is capable of describing very general systems of Timed 
I/O Automata. Of course, many analysis tools—especially automated ones like model-checkers — 
are not capable of handling fully general Tempo programs. In contrast with the conventional 
approach taken by developers of automated toots, Tempo does not outright limit the expressive 
power of the language and opts instead for the definition of sublanguages that are suitable for use 
with particular tools. 

2.3    An Example: mutual exclusion algorithm 

To illustrate the capabilities of Tempo and its simulator, we will be using the Fischer Timed Mutual 
Exclusion Algorithm. U has become famous as a standard test example for formal methods for 
modeling and analyzing timed systems. An informal description of the example appears hi [Ui], 
Chapter 24. 
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2.3.1     The Tnmpo s[)«*:ifi<:ati()n 

This example Ulustrates most of Lhe basic constructs needed for wrlUeg a Tempo program for a 
single Timed I/O Automaton modeling a sliared-memorv syslem. The e> unple also demonstrates 
how to express hivaiianls using Tempo, including invariants thai involve lime, 

The Tempo model shown in Code I and 2 descrihes the entire syste: i as a single Timed I/O 
Automaton. The vocabulary section declares the data types used in thl algorithm, namely, the 
abstract data type ptveess and the program counter abstract data type PcVatuc (an eimnierated 
type) to represent the exact location of each process in its program. Eac i process could be in its 
remainder rojion (program counter = pcrem), where it is not engaged in trying to enter the critical 
region. Or, it could be about to test, set, or check the turn variable. C:, it could be in various 
stages of entering or leaving the critical region the model uses separate p ogram counter values to 
represent situations where the process has successfully completed the trying protocol, where it is 
actually in the critical region, where it is about to reset the turn variable ipon leaving, and where 
it has successfully completed the exit protocol. 

The actual automaton description begins with the name of the autom.non, with formal param- 
eters Lchcck and iusvt. These are real numbers representing, respectively, a lower bound on the time 
between setting and checking, and an upper bound on the time between checking and setting. The 
where clause spcdlics restrictions imposed on the paramclors saying (mo£E important l>) that u~set 
must be strictly less than Lcheek. The automaton imports the vocabulaiy to make its definition 
available lo the remainder of the specificatiou. 

The automaton's signature, describe its actions. Actions are. ciassif ^d as input, output, or 
internal. Here, no input actions are used, i.e... the system is "closed". Snce the entire system is 
being modelled by a single automaton, each type of action is parameter-/ed by the uaine of the 
process that performs il. In this model, the internal actions are associe ed with shared-variable 
accesses—the steps that test, set, check, and reset the lum variable. The Dulput actions are those 
that mark processes' progress through the various high-level regions of the r code; The ti-yii) action 
describes process i moving from its remainder region to its trying rcqio:,, in which it executes a 
protocol to try to reach the critical region. The crH{i) action describes 3assage from the trying 

region to the critical region, and the cxH.{\) action describes passage from ,he critical region to the 
exit region, where process i performs its exit protocol. Finally, the rem(i) action describes passage 
from the exit region back to the remainder region. 

The automaton's state is Kpecified in the states section. The shares variable tern has type 
Null[;'ro<xs,s], which indicates that its value can either be a process or the special value nil to 
indicate the absence of value, tarn is initially set to nit. The variable pc represents the program 
counters for all of the processes in an array of PcValuc indexed by processes. Initially, all of the 
program counter values are set to pejran, which means that all of the processes start out in the 
remainder region. 

The remaining three variables are introduced solely to express the Deeded timing constraints. 
First, the variable nouns used to represent the real time. It is initialized St 0. 

Second, the variable lasLsct is an array containing absolute real time i 3per bounds {deadlines) 
for the processes to perform set actions. A deadline will be in force for a process t only when its 
program counter is equal to pc.se/, thai is, when it is in fact ready to set the tern variable. !n this 
case, the value of lasl.scl\i] will be a nonnegative real number: otherwise, that is, if the program 
counter is anything other than pc.se/, the value will be oc, representing he absence of any such 
deadline.   The elements of the tasi.scl array are defined to be of {.ypeAu-mentcd/icai.  a type that 
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vocabulary fischer.types 
types process, 
PcVatue : Enumeration [pcrefn, pctesl, pc.sct, pecheck, 

pc.lcavctry. pecrit, pcreset, pc_/eauecii(] 
end 

automaton fischer{Lcheck, uset Real) 
where u.set < {.check Auset >0 ALcheck >0 
imports fischcvAypes 

signature 
output /rif(i: process) 
output cnY(i; process) 
output cxtf(i: process) 
output neni(t: pi-ocess) 
internal (cs((i: process) 
internal sct(t: process) 
internal c/iccfc(»: process) 
internal rese((i: process) 

states 
(um; Null(process) : = nil, 
pc: Arrayfproccss, FcValue] : = constanf{pc-rem); 
now. Heal: = 0; 
last-set: Array (process, AugmentedRea(\ : = consian/^oo); 
jirsLcheck Array[proccss, Discreteliea^ : = cons(ani(0); 

transitions 
output iry{i) 

pre pc[i]  =pc,reTn; 
eff pcji] : = pcJesf; 

internal tesl{t) 
pre pc[tj  =pc_(es(; 
eff if (uni =ni/thcn 

pc[i] : = pc.se(; 
/as/.sc/[il : = {now + u.se/); 

fi; 
internal sct(i) 

pre pcji]  =pc.set, 
eff (unt: = em6crf(j); 

pc[il : = pcdieck, 
UsaLavM : = oo; 
first.check\t\ : = now + Lcheck: 

Code I: Tempo spec, of the Fischer algorithm (I) 
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internal chccHi) 
pre pcfi]  —pecheck f\firftLcheck[ii\ <nouT, 
off if (um  =cmbed{i) then 

peji] : = pc_/cai/e(»y, 
else 

pc[i] ; = pctesi; 
fi. 
firai-chec^ : = 0; 

output cn((i) 
pre pc[i]  =pcjeavetnf, 
off pc[t) : = pc.crit, 

output exil{\) 
pre pc[il  =pc.cTit; 
eff pc(i] : = pcrwef; 

internal resal^i) 
pre pc[i]  =pc-reset^ 
eff pc[i] : = pcJeaveexit; 

lum : — nt(; 
output rcm(i) 

pre pc[i]   =pcjeaveexil; 
off pc[ij : = pcrem; 

trajectories 
trajdef Iraj 

stop when 
3i: process {now =lasLset[t\), 

evolve 
(i{now)   =1; 

Code 2: Tempo spec, of the Fischer algorithm (I") 
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includes all (positive and negative) real innnbers. plus two values cor res ponding to positive and 
negativo infinity. Initially, since none of the program counters is pc_se(, the values in the array are 

alt oo. 
Third and linally. the variable fmt.chcck is an array containing absolute real time lower bounds 

(curliest limes) for the processes to perform check ucUvns, when their program counters are equal 
to pc.check. The elements of yirsf.c/iect are of type Disavteileal, which meajts that they always have 
Heal values, and moreover, they do not change between discrete actions. 

The detailed descriplion of the transitions of the aulomalun follows in the transitions section. 
TVansitions are (state, aclion, slate) triples. The transitions are described in yuarded counimnd 
style, using smatl pieces of code called timisition definitions. Each transition definition denotes a 
collection of transitions, all of which share a common action name. 

Each transition has a name, list of parameters, a pncoudUion that indicates when the action is 
enabled and finally, an effect clause that describes the changes to the state when that accompany the 
action. Input actions are always enabled, reflecting the assumption that Timed I/O Automata are 
input-enabled. Notionally, input actions have no preconditions, as a shorthand for the precondition 

being true. 
The tt-y{i} transition represents an entrance by process i into its trying region. The transition 

is allowed to occur whenever pr\i] =pc,rcm, that is, whenever process i is in its remainder region. 
The effect is simply to advance the program counter to pc.tcsl to indicate that process t is ready to 

test the turn variable. 
The tc'st(i) transition represents process i testing the (urn variable. It is allowed to occur when- 

ever pc[i] =pcjcsl. The transition can either find the turn variable equal to rul at which point it 
moves to take the turn (by setting the program counter to pc.set) and saves in (a5/.5e([t] the deadline 
for the set action to occur at the latest in ti.sc( time steps in the future (away from vow). The 
transition can also find that lurn is not nil and simply lakes no action to remain in the state, ready 

to test again. 
The sct(i) transition represents process i setting the turn variable to its own index. Tins is 

allowed to occur whenever pc[i] =pc.sel. The effects are given as straight-line code in which process 
i simply sets torn to its own index (the embed call is necessary to store the value into an object 
of type Nul![process]). The code then sets the program counter to pceheek to enable the check{i) 
transition thai will verify the tum variable. Now that the sct(i) aclion has occurred, the lasl.sct\i\ 

deadline is reset to its default value, oc. The code also records the earliest time when process i 
could recheck the torn variable based on the current clock new and the lower bound Lcheck. 

The chcck(i) transition is enabled when process i'a program counter is set to pcchcck and its 
earliest checking time has passed {firsl-check{i\ <iw\i:). When the transilion executes, two interesting 
cases may arise: If process i finds that (urn is still equal to i, it leaves the trying region and enters 
the critical region. On the. other hand, if it finds the torn variable equal to anything else, it gives 
up the current attempt and goes back to the testing step. In either case. }irsi-che.ck[{\ is reset to its 
default, 0. 

The subsequent transitions are quite straightforward. A cn^(i) transition represents process i 
moving into the critical region, and an e.xU{i) transition represents process i leaving the critical 
region. A rcsei{i) transilion represents process i resetting the Cam variable to its default value m7, 
and a rem(i) transition represents process i returning to its remainder region. 

The final part of the automaton description is the set of trajectories, that is, the functions from 
time to states thai describe how the slate is permiUed to evolve between discrete steps. This model 
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spmlics one trrtjoclory dclinition, named trog. This tleiinition describes .lie evolution of the state 
in a way thai aHowed the current Lime BOW to increase at rate 1. All of the other state variables 
arc of types that arc defined to be discrete: these, by default, arc not .dtowed to change during 
trajectories. The stop when condition says that a trajectory must stop f the slate ever reaches a 
point whore the current time nmo is equal to a specified deadline /as/.5c/[ ], for any r. That is, time 
is not "allowed to pass1' beyond any deadline currently in force. 

This stop when condition is an example of a phenomeuoii whereby an autumaton can prevent 
the passage of lime. This may look stiauge (at first) to some prograi micrs. since programs of 
course cannot prevent time from passing. However, appearances can be Jeceiviug and the Fischer 
aiaoniaton is not exactly a program; it is a descriptive model that expresses both the usual sort of 
behavior expressed by a program, plus additional timing assumptions that might be expressed in 
other ways. 

2.3.2     Properties of the algorithm 

Tempo can be used to describe not just algorithins, but also properties that we would like the 
algorithms to satisfy. For example, the Fischer algoriUnn is supposed to stlisfy the riiuluni excluskm 
property, saying that no two processes can simultaneously reside in their critical regions. This is a 
claim that the mutual excliLsion is an invariant of the Fischer algorithm, that is, that it is true in 
all reachable slates of the Jisehar automaton. This claim can be expresseJ in Tempo with a block 

invariant of fischev. 
Vi: process V): process 

(i ytj ^{pc{i\ /pccn"( Vpc^l ^pccril)); 

This invarianl delinilion claims that, in any reachable state oi the automaton, any two processes 
cannot simultaneously be in the critical section. This formal statement must, of course, be verified 
with a tool in order to fonnally prove that the algorithm is correct. For nstance, one could use an 
interactive theorem prover such as PVS, a model-checker like UPPAAL, or run simulations of the 
protocol and require the simulator to check the assertions after every single step of the simulations. 

In the next sections we describe the Tempo language and integratec development framework, 
and their design in more detail, and we describe the work carried out in Phase II. 

3    Extensions of I/O Automata and Timed I/O Automata Frame- 
works 

We have continued our work on mathematical foundations for model.ng and analyzing limed, 
hybrid, and probabilistic systems. We have been pursuing an effort to extend Timed I/O Automata 
to allow probabilistic behavior even before the start of Phase I work, resulting in several papers, 
e.g., [23. 25, 19|. In an extended series of case studies, we have alst been using probabilistic 
(F10A) and timed I/O automata (TIOA) to model and verify security piotocols. This has entailed 
extending the formal foundations in several directions, to restrict possib lities for nondeterininism, 
to define appropriate implementation relationships for the security settii g, and to integrate timing 
into security models. 
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3.1 Probabilistic extensions 

Our recenl. work investigated the tinie-bouiKled lask-PIOA modeling franiework, an extension of 
the probabilistic input/output automata (PIOA) framework that can be used for modeling and 
venfying security protocols. Time-bouuded Uisk-PIOAs can describe piobabilistic and noitdeter- 
ininistic behavior, as well as tiinebounded computation. Together, these features support modeling 
of important aspects of security protocols, including secrecy requirements and limitations on the 
computational power of adversarial parties. They also support security protocol verification using 
methods that are compatible with less formal approaches used in the computational cryptography 
research communiLy. We illustrate the use of our franiework by outlining a proof of functional 
correctness and security properties for a well-known oblivious transfer protocol. These results 
appeared in print in 2008 [4]. 

We also introduced the notion of approximate implementations for Probabilistic I/O Automata 
(PIOA) and developed methods for proving such relationships [24]. We employ a task structure 
on the locally controlled actions and a task scheduler to resolve nondeterminism. The interaction 
between a scheduler and an automaton gives rise to a trace distribution a probability distribution 
over the set. of traces. We define a PIOA to be a (discounted) approximate implementation of 
anothci PIOA if the set of trace distributions produced by the first is close to thai of the latter, 
where closeness is measured by the (resp. discounted) uniform metric over trace distributions. We 
propose simulation functions for proving approximate implementations corresponding to each of 
the above types of approximate implementation relations. Since our notion of similarity of traces 
is ba^ed on a metric on trace distributions, we do not require the state spaces nor the space of 
external actions of the automata to be metric spaces. We discuss applications of approximale 
implementations to verification of probabiliHtic, safety and termination, 

3.2 Extensions for reasoning about security protocols 

In another recenl development, we investigated a new paradigm for the analysis of long-lived security 
protocols. We allow entities to be active for a potentially unbounded amount of real time, provided 
they perform only a polynomial amount of work per unit real time. Moreover, the space used by 
these entities is allocated dynamically and must be polynomially bounded. We proposed a key 
notion of loug-tenn iuiplemenlalion, which is an adaptation of computational indistiuguisliability 
to the long-lived setting. We show that long-term implementation is preserved under polynomial 
parallel composition and exponential sequential composition. To illustrate the use of this new 
paradigm, we analyze the long-lived thnestamphig protocol of Haber and Kamat. This work was 

submitted for publication in 2008 [5] 

3.3 Extensions for hybrid systems 

We completed our work on a journal paper on average dwell time for hybrid systems [15]. Average 
dwell time (ADT) properties characterize the rate at which a hybrid system performs mode switches. 
In this paper, we present a set of techniques for verifying ADT properties. The stability of a 
hybrid system A can be verified by combining these techniques with standard methods for checking 
stability of the individual modes of A. We introduce a new type of simulation relation for hybrid 
automata switching simulation for establishing that a given automaton A switches more rapidly 
than another automaton D. We show that the question of whether a given hybrid automaton has 
ADT a can be answered either by checking an invariant or by solving an optimization problem. For 
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classes of liybrid iiuloinala for wliicli ii^'arianls can be checked auLomal cally. the invariaiil-biisoci 
method yields an auLomalic utelhud for verifying ADT; for auLomata Mat are outside this class, 
the invariant has to be checked USHtg inductive techniques. The optimization-based method is 
automatic and is applicable to a restricted class of initialized hybrid auloniata. A solution of the 
optimization problem either gives a counterexample execution that violates the ADT property, or 
it confirms that the automaton indeed satisfies the property. The optimzation and the invariant- 
bused methods can be used in conibhmtion to find the unknown ADT of ;: given hybrid automaton. 

We developed a new abstraction technique, event order abstractio i (EOA), for parametric 
safety verification of real-time systems in which "correct orderings of events" needed for system 
correctness are maintained by timing constraints on the systems1 behavio- [32]. By using EOA, one 
ran separate the task of verifying a real-time system into two parts: I. Safety property verification 
of the system given that only correct event orderings occur; and 2. DerivUion of timing parameter 
constraints for correct orderings of events in the system. The user first identifies a candidate set of 
bad event orders. Then, by using ordinary untuned model-checking, the user examines whether a 
disrretized system model in which all timing constraints are abstracted away satisfies a desirable 
safety property under the assmnption thai tin; identified bad event oiders occur in no system 
execution. The user uses counterexamples obtained from the model checker to identify additional 
bad event orders, and repeats the process until the model-checking succeeds. In this step, the user 
obtains a suliieienl set of bad event orders that must be excluded by timing synthesis for system 
correctness. Next, the algorithm presented in the paper automaticalW derives a set of timing 
parameter constraints under which the system docs not. exhibit the identified bad event orderings. 
From this step combined with the untimed model-checking step, the user obtains a suflicient set 
of timing parameter constraints under which the system executes correctly with respect to a given 
safety property. In our documented work we illuslrated the use of EOA with a train-gate example 
inspired by the general railroad crossing problem. We also summarized three other case studies, a 
biphase mark protocol, the IEEE 1394 root contention protocol, and the Fischer mutual exclusion 
algorithm. 

4    Tempo Toolkit: Architecture and Language 

The Phase II STTR [18j completed in 2007 produces a solid implementation of the TIOA language 
in the form of a toolkit: TEMPO. VEROMODO focused on a redesign of the core implementation 
of the front-end (analyzer and compiler) and a design of its interfaces o the various back-ends. 
TEMPO has the following characteristics 

• It is a Java 1.5 implementation of a refined TIOA language. 

• It offers a modular design to facilitate the integration of additional tjols as indepeudent back- 
ends, (e.g., the PVS translator, the simulator or the model-checkei). It is based on modern 
modular architecture where each back-end tool is a plug-in that can be loaded at runtime to 
extend the compiler. 

• U features a fine-grained interface to communicate with back-end tools that would make it 
possible to establish a one-to-one correspondence between each back-end tool and the TIOA 
abstractions offered by TEMPO. 
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• II oilcvH a licxiljlc inicgratioii wivli Ihc back-ends thai lei eacli back-end independently re- 
fine the semantic roles to either augment the core language with back-end specific language 

extensions. 

4.1    The Architecture of Tempo 

Figure 1: TEMPO'S architecture 

TEMPO'S architecture was designed and developed by our academic partner Laurent Michel 
(University of ConnecticuL). and it ts based on a modular multi-stage compiler. The overall 
organization is shown in Figure 1. The first two compiler stages are fixed and independent of the 
selected back-end tool. The third stage depends upon tlte selected tool and is loaded autoiualically 
from a JAVA shared library (JAR file) based on the user selection at the conunand line or in the 
user interface. 

The initial stage is responsible for the lexical and syntactic analysis of a TEMPO spocificatiou. It 
assembles its input from one or more text fdes containing the specifications as well as one or more 
vucabuluiies. A vocabulary is a TEMPO specification containing built-in abstract, data types lor 
commonly used data structures such as sets, multi-sets, maps or arrays1. Lexical and grammatical 
errors are reported immediately. The parser is written with a state-of-the-art freely available parser 
generator: ANTLR v2.7.x2. The output of this phase is an abstract syntax tree that is passed down 
to a second analysis stage. 

The second stage focuses on the semantic analysis of tlte specification. This phase performs 
multiple passes (traversals) of the AST to analyze it. 

From a high-level standpoint, the semantic analysis applies a collection of validation rule to 
each node of the abstract syntax tree. Each rule take the form 

P{n)=>oi, ,9k 

i dcHiK- thu 'Us 

2ANT[,R v2 is availaljlc from http://' 

iuiditioiittl vofctljuliUiL-s which are imli^tiiiguisliabii.' fruni TE-;MPO'y own hmlt-in vocab- 

tlr2.oi-g/ 
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where P is a boolean pvedicate on the subtree rooted al n that delermiiies wlielher the rule is 
applicable and (ji Uirou^li g^ are aclions thai, transfonn, annulale. or possibly tag the tree as 
semanlically uiisomtd. Each back-end can add a set of validation rules that capture additional 
requirements on the AST to comply with its limitations. For instance, if a back-end cannot operate 
on expressions containing qitanlifuTS (V or 3), it can add a rule 

class{n)    s ASTForull V class{n) = ASTExist 

=> rcjccl.{ii, "The hack-end xyz does not sup[)ort qnantifers in expressions") 

that the semantic analysis will apply inductively (alongside all the other rules) to all the nodes of 
the abstract syntax tree. 

4,2    Tempo language 

The TIOA formalism and associated theory is defined in the monograph produced and published 
as a part of this project [13]. We refer the reader to the monograph for the detailed informatiun 
about the TIOA formalism, and modeling and analysis methodology. 

The TIOA language was refined during the implementation of TnMPO to take into account 
standard user expectations and to produce an implementation as uniform as possible. The T^MPO 
language itself lias a minimal syntax, which closely matches the simple semantics of the Timed I/O 
Automata mathematical framework. In fact, the mapping between a Tempo automaton description 
and the timed I/O autoinalon that it denotes is pretty transparent. For distance, an automatons 
discrete transitions and continuous evolutions are described directly in Tenpo by ■'transitions" and 
"trajectories", respectively. The ininimality of the language does not li nit its expressive power: 
Tempo can describe very general systems of timed I/O automata. Of course, each analysis tool 
brings its own computational limitations, and Tempo accommodates tl em with the addition of 
fool specijic restrictions (captured through the predicate mechanism described above.) to define a 
suitable sublanguage. 

5     Deployment Problems 

This section reviews the deployment phase that arise when constructing a distributed systems. We 
discuss our prior work in the area, then present the language extensions leeded to convey the key 
characteristics of deployment instances, and illustrate an application of our framework in specifying 
a meaningful sample deployment problem. 

Our earlier work on deploymeut of distributed systems was done in the context of an architec- 
tural specification framework called the Zs (2, 1]. Z5 uses five levels of abstraction, called fnterface. 
Implementation, Integration, Instantiation, and Installation, to describe the hardware and soft- 
ware structures of distributed systems. Deployment of software compo lents to hardware nodes 
takes place at the Installation level using information gathered at liighe- levels. Z8 does not in- 
corporate specification of component semantics, and wc explored the use of the. I/O Automata 
language in [1] to complement the. structural specifications in Is. Specification of systems in Zs 

can be done using UML, but it is not supported by an integrated development environment. The 
deployment optimization was performed using customized techniques based on binary integer pro- 
gramming and genetic algorithms [3]. Our current work on deployment op imization in TENfPO is in 
part motivated by Is. By contrast, TEMPO provides an integrated develcipment enviroument that 
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incorporaies both stinciural system descriplions and syslem sonumtics, and allows for automatic 
generalion of deploymeiiL mappings using advanced conslraint-programming leclmiques. 

5.1     Augmenting Tempo with deployment annotations 

The Tempo deployment annotations, if any, are part of the definition of a composite automaton. 
The composite automaton is the only portion of a TIOA model whicli has multiple cotnpuueuts. 
and it is these component parts which potentially could be deployed to different computing nodes. 

The simple composite automaton in Figure 2 illustrates the required deployment annotations. 
(Section 5.3 has a more realistic example using an Eventually Serializabte Data Service (ESDS) [8, 
7|.) Our example composite automaton consists of two types of components, A and D- Aulumaton 
A has two output transitions, a send transition that specifies both a message to be sent and ihe 
klcntiher of its destination, and a gossip transition that spailics data to lie broadcast. Automalon D 
has the two matching input transitions. For simplicity, the state and transition details for automata 
A and B have been omitted. The composite automaton C has two instances of autoinaton A, called 
ol and a'2. and three instances of automaton D, called 61, b'2, and 63. 

automaton A 
signature 

output send{»i : String, id : Nat) 
output gossrp(rffl?(( : Array(Nat.Nat]) 

states 
transitions 

output send(n!, iri) 
output goss\p(data) 

automaton lJ{id : Nat) 
Signature 

input send{7fi : String, const id) 
input gossip{dala : Arr3y(Nat, Nat|) 

stales 
transitions 

input send(m,irf) 

input gossip(rfQ(a) 

Figure 2: Simple composite automaton with deployment annotations 

The deployment annotations begin with the keyword deployment and contain, at a mininmm, a 
list of the computing nodes, the physical connections among those nodes, and a description of the 
communication patterns of the composite antomatoirs components. The list of computing nodes 
begins with the keyword nodes and is followed by the list of all the computers in the network, 
namely nl, til, n3, and n4. In tins example, node nl is directly connected to ^2, and nodes ri2, 
u3, and ;(4 are directly connected to each other by a common connector. This is denoted by the 
deployment section beginning with the keyword connections and containing, for each set of directly 
connected nodes, a list of the individual nodes, separated by commas and enclosed in braces. 

The last deployment section in this example begins with the keyword communication and lists 
the relative frequencies with which each of the transitions of the composite automaton occur. For 
each transition, the component which generates the transition as an output transition is listed 

automaton C connections 
components {"1,"2}-, 

nl i A; {n2,7i3,n4}; 
al-.A: 
H : U{1): communication 
la : B(2)i (il.gossip -> M,fc2,63 freq 
M: ii(3); u2.send -> M freq 10; 

fi2.send -> M freq 2; 
deployment 

nodes 
nl; 
-.2; 
n3; 
n4; 



Vr.HOMODO, Inc. Final Tecluiicn! Report FA955()-07-C-(fn4 

iirst. followed by a period, tlic name of Uic Iransition, the syinbol ->, and the names of all the 
components which receive this transition as input The list of input co. iponents are followed by 
the keyword freq and an expression for the relative Trequency of the transition. Each frequency 
expression is interpreted as the number of times the transition occurs during some time period 
ot unspecified length, where it is assumed that the same time period is used in dotermining the 
frequencies for ail the transitions. Here, component «1 broadcasts its gossio message to components 
61, b2, and 63 with a relative frequency of 5 while «2 outputs its send lessage to component b3 
with a relative frequency of 10. 

Figure 3 enhances our example composite automaton with some of the optional deployment 
constraints. The first constraint, beginning with the keyword support, Bfecifies which components 
may run on which nodes. In our example, node ?il supports compomnts (il and (i2. node nl 
supports all the components, and nodes u'i and u4 support componercs 61, fr2, and h'i. It no 
support section is provided in the deploymenl annotations, every compc tent may be deployed to 
every node. 

automaton C 
components 

al : A; 
fl2; A; 
61 : 13: 
02: B, 
b-i:B\ 

deployment 
nodes 

nl: 
7i2; 

n3; 

connections separated 
{tll,n2); (cil,<l2); 
{n2,ri3. FI4); (H. 62,43) 

support together 
nl <- nl.aS, {(il.U); 
n2 <- all; 

n3<-W,M,M; communicati'm 
n4 <- M,62,Mi rtl.gossip -' bl,b2.ii3 freq 5; 

a2.send -> i3 freq 10; 
fixed Q2.send -> bl freq 2; 

112 <- 111; 

Figure 3: Annotations for deployment constrain- = 

The fixed section lists each component which must be deployed to :i particular node. Once 
again, a statement of the form x <~ y means that component y must be assigned to host x. 

Reliability and fault-tolerance consideration may require that some groups of components be 
separated or co-located. For instance, data replicas should be hosted on ditfeient nodes while tightly 
coupled modules (a communication channel and its replica) should be co-located for cfiicicncy 
reasons. The separated and together sections can be used to specify these requirements and define 
lists of sets of modules. In our example, components «1 and a2 must be assigned to distinct nodes, 
components 61, 62, and 63 must be assigned to distinct nodes, and components (il and 61 must be 
assigned to the same node. 

Figure 4 illustrates more advanced deployment annotations. The first of these is the constants 
section, which allows the user to name literals1 used within the specification. Components often 
will "pass through" some messages, possibly recording information from Ll.e messages in their state. 

It is convenienL to specify these common message frequencies using consLants. In our example, /I 
is declared to have the value 5, and /2 is declared to have the value 2. Then /I and /2 are used 

3Ciirrcii(Iy only uf type Nat. 
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bo sijecify the relative frequencies of llie Lhree tvitnsitions in the communication section. 

automaton C 
components 

(il : A: 
(,2 : A: 
IA : B\ 
b2: D; 
63: ZJ; 

deployment 
constants 

/I :   Nat:=5; 
/2 :   Nat := 2; 

node types 
JJC. sim; 

nodes 
nl :   pc\ 
n2; 
ri3 :   sun; 
n4 :   smi; 

connections 
{ril,n2} bandwidth 25; 

{n2,sim}; 

equivalent 
{..3.n4}: 

Support 
nl <-«l,fl2; 
nl <- all; 
.still <- 61,62,63: 

communication 
ol.gossip -> 61,62.63 freq /I; 
n2.send -> 63 freq /I + /2 msgSize 4; 

fl2.send -> 61 freq /2 msgSize 8: 

Figure 4: More advanced deployment annutations 

Node types represent groups of nodes with the same capabilities. Any wliere a group appear in a 
specification, the node typo may be used instead. The node types of a deployment musl be declared 
with the keywords node types followed by comma-separated list of node names and terminated with 
a semicolon. Our example declares two node types, pc and Sim. Node Til is of node type pc, and 
nodes fi3 and n4 are members of 5im while node it'2 has no node type. Whenever pc appears in the 
specification, it is replaced with node nl, and whenever sun is used, it is replaced with nodes n3 
and TJ4. For instance, the connection among nodes n% n3, and TI4 may be specified U {n'i.sun}. 

Some groups of nodes are completely equivalent, in that they support the same set of compo- 
nents and are connected to other nodes in an equivalent manner, Specifying that these nodes are 
equivalent enables the opimizcr to be more efficient. The sots of equivalent nodes are listed in the 
equivalent section. In our example, nodes n3 and n4 are equivalent. 

In some applications the amount of data transmitted with each transition is essentially the same, 
but in other applications the amount of data transmitted varies from one transition to another. The 
deployment annotations allow the size of the transmitted data to be specified for each transition. 
The optional stanza msgSize expr may be added to each trnusition listed in the communication 
section. Each message size expression is interpreted SB a multiplicative factor of an nnspecilicd mh( 
of transmitted data. In our example, the gossip messages from componeut nl to components 61, 
62, and 63 are of size 1, the send messages from component a2 to component 63 are of size 4, and 
the send messages from component ((2 to component 61 are of size 8. 

A connection may have a bandwidth limitation. This is specified by appending the stanza 
bandwidth expr where the expression specifics the maximum baudwidlh for the set of nodes in the 
corresponding connection. The bandwidth expression is interpreted as the maxhmnn amount of 
data which may pass through the connection during a time period, expressed as a factor of a unit 
of transmitted data. The implementation assumes that each transition uses a single path for data 

transmission. In our example, the connection between nodes nl and n'l has a maximum bandwidth 
of 25. 

5.2     Language Extensions for Deployment Annotations 

Deployment annotations are added to the Tempo language as an optional extension to the defini- 
tion of a composite automaton. The deployment specification begins with the keyword deployment 
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composadAutomatou ■.i = romponenls liidilfnAclionSelx?   compSchedute?   deplo^meiil? 

deployJiteiU ::= 'deployment'  constaiils?    iiode'I\ipcsf   nodes 
coinicrlioiis cquivakntl   couslmiiil*   communicction 

constants ::='constants' {coiislanl ;   ) + 
constant •.■.=ID :   lypelicf :=  cxpr 

jiodetypcs ■.-.^'ncide'  'types' nodcTypc. {,   nade'type)*  ; 
nodcType ::=ID 

nodes ::='nodes' (node ;   }-f 
fi<j(/e::=ID ([ varList{.   varList)* ]   )? (:   nodeTypc)"! deployWhcrvl 

connections :'^='connections' ({   nodeSpecList }   ('bandwidth' cxpr)? ;   ) + 
e^/iiiwi/cfi/:;='equivalent' ({   tiodrSper.LisI }   |   ) + 

constmint ;: = siippor/ 
[ together 
| separated 
I fixed 

support ::=*support' {nodeSfiec <  -  ('all' | compSpecList );   ) + 
(oye//ier ::='together' ({  compSpecList }   ;   ) + 
scpnm/Cf/::='separated' ({   compSpecList }   ;   )-+• 
Jixed ■.:='fixed' {ttodclnstance <  -  comphislance ;   ) + 

communicfition ::='comaiunication' comwSpec + 
commSpcc ::='fQt' ID 'in* INT .   .   INT 'do' commSpec + 'od' 

| commTransitio/t 
comniTSxinsiliou •.:=compl}nnsition - >  compSpecList 'freq' cipr ('msgEize' erpr )? ; 
compl)-ansition ::=compInstance .   ID ((   expr(,   expr)*   )   )? 

nodeSpecList ::=nodeSpec (,   nodeSpec )* 
nodeSpec :: = nodeIuslance deploy Where! 

| nodcTypc 
nodeln stance •.■.=\\) {{  cipr{,   expr)*   ]   )? 

compSpecList :: — compSpcc (,   compSpcc )* 
compSpec ■.■. = compInstance deploy Whcret 
comphislance v.^Wi {[  expr{.   expr)*   ]   )? 

dcptoyWhcrc ::='where' pai-amliangc (A    parnmRanf/c )* 
paimnltani/e :: = ID '\in' INT .   .   INT 

plainOp :\=as before j .   . 
expr ::—as bcfoio | pipr (.   .   expr )-+- 

Figure 5: EBNF Grammar fragment for deployment expressions. 
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lollouctl by oplional constants and node types spccilicaUons. required nodes and connccLioiw spec- 
ifications, optional equivalent nodes and constraint specifications, and a required coinmunication 
specification. The components to be deployed to a network are the component parts of the com- 
posite automaton. 

The constants specification, il present, begins with the keyword constants followed by one or 
more declarations of constant variables. Each declaration begins with an identifier, corresponding to 
the name of the variable, followed by a colon, the data type of the variable, the assignment operator 
:=, the value of the variable, and a semicolon. The scope of a constant variable declaration is the 
body of the deployment specification. As the name implies, the value of a constant variable cannot 
be changed. Constants may be used in expressions to specify bandwidth limitations of connections 
and frequencies and message sizes of connnunicating transitions, for example 

The node types specification, if present, consists of the keywords node types, one or more 
identifiers, separated by commas, and a semicolon. Each identifier is (lie name of a node type, 
which is just a shorthand name for a group of nodes. A node may belong to at most one node type. 

The mandatory nodes spedficatioii identifies the host computer nodes onto which the Tempo 
components are to be deployed. It begins with the keyword nodes followed by one or more node 
declarations, eacli ending with a semicolon. Each node declaration begins with an identifier, cor- 
responding to the name of the node, and a list of its parameters, if any. separated by commas and 
enclosed in square brackets. Each parameter specification consists of an identifier, correspuiuhng 
to the local name of the parameter, followed by a colon and its data type. If multiple, adjacent 
parameters are of the same data type, their identifiers may be separated by commas and followed 
by a single colon and their common data type. After the node name and parameters, there is an 
optional node type designation, consisting of a colon and the identifier of the node's type, and an 
optional where clause. 

A node's where clause specifies the ranges of values for the node's parameters. It begins with 
the keyword where, followed by one or more parameter range specifications, separated by the AND 

operator A, and ends with a semicolon. Each identifier used within the node's parameter specifi- 
cations must have a corresponding parameter range specification in the where clause consisting of 
the identifier, the keyword \in, and the integer lower and upper bounds for the identifier's values. 

separated by two periods (. .). 
The mandatory connection section itemizes the hardware comnmuication links in the network, 

be they simple communication cables connecting two nodes or Ethernet cables or switches connect- 
ing multiple nodes. The section begins with the keyword connections and contains, for each link, 
the list of directly connected nodes, separated by commas, enclosed in braces, and terminated with 
a semicolon. If a link has limited bandwidth, that is specified, after the closing brace but before 
the terminating semicolon, with the keyword bandwidth followed by a measure of the limited ca- 
pacity. If DO bandwidth is specified for a link, it is assumed that the bandwidth of the connection 
is sufficient to be considered unlimited for the purposes of deployment. 

For each connection, each node specification consists of an identifier, corresponding to the name 
of the node, and a list of its parameters, if any, separated by commas and enclosed in square brackets. 
An optinnal whore clause may be used to refer to a group of nodes, whine each identifier used within 
the node's parameter specifications must have a corresponding parameter range .specification in the 
where clause, as above. A node type Identifier also may be used to refer to a group of nodes for a 
conueclion, if all the nodes of that type are connected with a single connmiuicalion link. 

Equivalent nodes, if any, are listed next, beginning with the keyword equivalent followed by 
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oacli group of equivalent nodes. Within each group the individual node or groups of nodes are 
specified in tlic same manner as tor connections, with the runic spwifkaikus separated by commas, 
enclosed in braces, and terminated wiih a semioolon. Providing the seis of equivalent nodes enables 
ttie optimal dcployiiiunt to hv LaUuhit^l niorc efficiently. 

Several consUaints may be placed on the deployment of eomponentc to nodes. For example, 
some components may execute only on a subset of the network's nodes Some components must 
be deployed to the same node, while other components must not be c-j-located. Finally, some 
components must be deployed to particular nodes. 

Each component specification consists of an identifier, corresponding i j the name of the compo- 
nent, and a list of its parameters, ii any, separated by commas and enclosed in square brackets. An 
optional where rlanse may be used to refer to a group of components, where each unbound identifier 
used within the component's parameter specilicalions must have a cone: jonding parameter range 
specification in the where clause, as for nodes. 

The support constraints, if present, specify which components may be deployed to which nodes. 
The section begins with the keyword support and gives for each nod? or group of nodes the 
list of components they support. Each individual support constrain! begins with an identifier, 
corresponding to the name of a node or node type. If the identifier corresponds to the name of a 
node, it is followed by the list of the node:s parameters, if any, separatee by commas and enclosed 
in square brackets, and an optional where clause specifying the range of values for the node's 
parameters. The node spedfication is followed by the symbol <- and either a list of specifications 
for the supported components, separated by commas, or the keyword alt if the nodes support all 
components. Each support constraint ends in a semicolon. If no suppon constraints are included 
in a deployment specification, every component may run on every nc Ic; otherwise, a support 
constraint must be supplied for each node. 

The together constraints, if present, specify groups of components Oat must be deployed to- 
gether to the same nodes. The section begins with the keyword together and consists of groups 
of component specifications, separated by commas, enclosed in braces. ? id terminated with semi- 
colons. 

Similarly, the separated constraints, if present, specify groups of components that must be 
deployed to separate, distinct nodes. The section begins with the keywoi 1 separated and consists 
of groups of component specifications, separated by commas, enclosed i braces, and terminated 
with semicolons. 

The fixed constraints, if present, identify the components that must te deployed to particular 
nodes. The section begins with the keyword fixed. Each individual feed constraint begins with 
an identifier, corresponding to the name of the node onto which the component is to be deployed, 
and a list of its parameters, if any, separated by commas and enclosed i: square brackets. This is 
followed by the symbol <- and a second identifier, corresponding to the name of the component. 
and a list of its parameters, if any, separated by commas and enclosed in square brackets. Each 
constraint ends with a semicolon. Since a fixed constraint assigns a siiu.le component to a single 
node, neither a where clause nor a node type may be used in the specifi ations. 

The final deployment, section, a mandatory communication section. .•. lerilies the frequencies of 
the composite autoniatous comimmicating transitions. It consists of tha keyword communication 
followed by the individual transition specifications. Each transition specification begins with an 
identifier, corresponding to the name of the "sending" component, a lis of its parameters, if any, 
separated by commas and enclosed in square brackets, followed by the dot symbol ,, and a second 
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idcntilicr, corresponding to the name of one of the component's transitions. These are followed by 
the symbol -> and a list of component specifications, separated by commas, for the "receiving" 
components. The transition specification ends with the keyword f req followed by an expression for 
the frequency of the transition, optionally the keyword msgSize and an expression for the average 
size of the transition's "message", and a semicolon. The transition must be an output transition 
of the ^sending" component and an input transition of each of the "receiving" components. The 
units and time interval for the transition frequency and message size expressions are not specified 
as part of the dcployinent annotations: it, is assumed that application-specific units are selected 
and uniformly used for all transition specifications and connection bandwidth limitations. 

A for loop can be used to specify groups of similar Liausitions, such as those of gossiping data 
replicas. The for loop begins with the keyword for. an identifier for the loop variable, the keyword 
in, integers for the lower and upper bounds on the loop variable, separated by the symbol ... 
and the keyword do. These are followed by one or more transition specifications, as above, and 
the keyword od. Each occurrence of the loop variable among the parameters of the '"sending^ and 
''reccivinj;" component sperifiratinns is replaced, in turn, by each value between the. loop variable's 
bounds (inclusively). 

5.3    Eventually Serializable Data Service Annotations 

An Eventually-Serializable Data Service (ESDS) [8, 7} maintains mulliple copies of its data for fault 
tolerance, but it selectively relaxes the consistency requirements among its copies of the data in 
exchange for improved performance. ESDS guarantees that the replicated data will eventually be 
consistent, although it may not be at a particular point during the execution. 

ESDS consists of four types of components; clients, front ends, replicas, and channels. The 

clients request operations to be performed on the shared data and receive responses containing the 
results of these operations. The front ends communicate with the clients, keeping track of all their 
pending requests and forwarding those requests to one or more of the replicas. Each replica keeps 
a copy of the requested operations on the shared data and a partial order on those operations; 
the partial order must be consistent with both the responses and the eventual total ordering of 
the operations. The front ends do not send every request to every replica, so the replicay "gossip' 
among themselves to stay informed about all the operations that have been received and processed. 
The chauueis are used to transmit these gossip messages. 

Figures 6 and 7 illustrate the componenL communication of an example ESDS and the computer 
network onto which it is to be deployed. This example first appeared in [l]. More recently, 
the example was hand-coded in Comet to test the feasibility of using constraint programming to 
determine optimal deployments [21]. Figure S contains the Tempo deployment aunotatious for this 
example. 

The example consists of four clients, c[l|, t[2|, e[3}, and c[4], two front ends, fc\\\ and /cl2], and 
six replicas, r(l], r[2], r[3|, r[4\, r[b], and r[(i|. Clients c[l] and c[2] make their requests of /ejl], and 
clients c{3j and c}4] make their requests of fc[2\. Front end fc[l], in turn, forwards its requests to 
rfl], and front end /e[2] forwards its requests to r[4]. The components are to be deployed to four 
PCs, pc\l\. }x:[2], pc[3], and /;c[4], and ten Sun servers, sim[lj through 9un(10|. Each of the PCs is 
connected to a Sun, and all of the Suns are connected to each other with a common connector. 

Several additional requirements are placed on the deployment. First, c[l], c[2j, and t[3] must 
be deployed to PCs; the rest of the components must be deployed to Suns. Second, to maintain 
fault tolerance, the replicas must be deployed to distinct computers. Third, /(:[ll must be deployed 
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Figure 7: Nodes Tar ESDS example. 

Figure G: Components for ESDS example. 

to inm[2], and /e[2) most be deployed to smijli]. Tins last reqniremen. was added lo make liie 
deplovmeni opLimizalion more tractable in its initial iinpienieittaUou [1]. 

The Tempo implementation of ESDS requires cliannels between each pair of replicas, making 
tlie model more consistent with the original ESDS model [8]. These cliLimels are named c/i[l, 1) 
through c/t[G,G], where replica r[i\ uses channel clt{ij] to gossip with replica r\j]. The channels 
require an additional set of deploynienL constrainls, namely, each replica rj*) mnsl be co-located 
with each of its channels c/i[i,j]- 

The ESDS automaton in Figure 8 stores both its components and its nodes in arrays. For 
example, the Client components are declared in the components section "ith 

c[i :   Nat)   :  C7icn/(0 where i \in 1..4; 

Note that the data type of the array index must be declared as an Nat. The range of the array 
indices is specified with the keyword where followed by the index varia.le, the keyword \in. the 
lower bound of the indices, two periods, and the upper bound of the indices. Array indices need 
not start with 1. Both the component and node arrays may be multi-dime isional. such as the array 
t/i uf Chaunel components. 

The components and nodes that are stored in arrays may be accessed both individually, such as 
lfc\'-i\.. or as a group of sequential elements, such as sim[i] where i \in 5..1C in the equivalent section. 
Again, a where clause is used to specify the range of array indices. Note that the range of indices 
may be used to specify a subset of the elements in an array. 

In the communications section nested for loops may be used to spec ty similar transitions for 
arrays of components. This is particularly helpful hi the ESDS autouuUo for specifying the gossip 
frequencies of the 72 trmisitions among the replicas and channels. 

6    Generating deployment models 

The deployment annotations are incorporated into the Tempo Toolkit [V] as a new plug-in. The 
plug-in translates the annotations into a Comet constraint program, wind is subsequently executed 
to determine an optimal allocation of components to computing nodes in the target network. We 
now describe in detail the translation scheme, the resulting Comet program, and the language 
restrictions designed to enable effective automatic generation of optimal icployment. 
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aulomaton ESUS 
components 

c[i :   Nat]   :   C'/ieii/(0 where j \m 1..4; 
fe\i:   Nat]   :   /■VOT^IU^O where i \in 1,.2; 
r[( :   Nat]   :   Rcplica{i) where i \in 1..G; 
c[i:   Nat, j :   Nat]   :   CViamif^i,./) where 

i\in l-.G /\j \in 1-0; 
deployment 

constants 
clFreq:  Nat := 10; 
c2Freq :   Nat := 2; 
cZFreg:  Nat := 10: 
cAFreq :   Nat := 5; 
yossipFreq :   Nat := 5; 

nodes 
pc\i :   Nat] where ( \m L.4; 
sun[i :   Nat] where i \in 1..10; 

connections 
{^ll]lS(m[l]}; 
{^[2]!S»n[2]}; 
{j^[3]:5im[3]}-. 
{pc[4].,sun\4]}- 
{sun\i] where i \in 1..10}; 

equivalent 
{sunft] where i \in 1..4}; 
{sun{i] where i \in 5..10}; 

support 
pc[i] where i \in 1..4 <- cjl], c:[2],c[3l; 
sun\i] where ( \in 1..W <- r[4]T/(-.[l],/e[2], 

r[ij where i \in 1..G; 
i>un[i] where i \in 1..10 <- c\i,j\ where 

i \rn L.fi /\j \in 1..G; 

fixed 
sini[2l <- /(;[1]; 

separated 
(r[ij where i \in 1..6}; 

together 
{r|l].c/i[l,7] where j \in 1. 
{r[2]1c/i(2;j] where j \in 1. 
{)-[3],c/i[3,j] where 7 \in 1. 
{r^l^c/^, j] where j \in 1. 
{r[5j.f/i[5, j] where j \in 1. 
{r[G].r/([fiJl where j \in 1, 

communication 

c[l].request -> /e[l] freq clFrcq\ 
c[2].request -> Je\l\ freq c2Frcq\ 
c[3j.request -> /e[2] freq cZFrcq; 
cj4j.request -> fe\1\ freq c4Freq; 
/e[l].send -> r[l] freq cXFrcq + c2Fre.q\ 
/c[l].response -> c[l] freq cU-Veg; 
/e[lj.response -> c[2] freq c2Freq\ 
/e[2].send -> r[4] freq c3Frcq + c4Freq; 
/e[2].response -> c[3] freq c3Freq\ 
/e[2].response -> c:[4j freq cAFreq: 
r[l).receive -> fc\l] freq clFreq + c2Freq\ 
r[4].receive -> fc\2] freq cZFreq + cAFreq; 
for i in 1..G do 

for j in 1..6 do 
r[(].gossipSend -> cli[i.j] freq yussipFrcq; 
c/i[i, jj.gossipReceive -> r\j] freq qossipFrcq; 

od 
od 

Figure 8: Deployment aiuiolaLions for ESDS example 
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6.1     Tianslation Scheme 

Tlte deploymeul. aimoLiitious are extensions to Uie Teuipo language, 
so care was taken In mhiimize their Impact on existing Tempo pro- 
grams. To that end, the deployment annotations only occur within 
the definition of composite automata, and they are isolated within 
those definitions to a separate new section begimiing with the key- 
word deployment. 

The translation process begins by enumerating all the cumponents 
and nodes and assigning their names, as provided by the Tempo mod- 
eler, to two arrays of type string. The Comet program then identilies 
the components and nodes by the indices of their names in these ar- 
rays. For example, for the deployment annotations in Figure 2 the 
array of node names is ["7il","n2","Tj3","ri4"] and the connection 
sets {7(1, n2} and {?i2, n.'i, 7i4} are encoded as {0,1} and {1,2,3}. At 
the end of execution, the Comet program displays the nptimal deploy- 
ment with the Tempo modeler's names. Figure (J shows the resulting 
deployment output for all but the channel components of the ESDS Figure 9; Deployment for 

example in Section 5.3. ESDS Example 
The variables declared in a constants secLion of the deployment specification are carried over to 

the Comet program and declared and initialized there. When these variab es are subsequently used 
to specify communication frequencies, for example, the variable names, rather than their values, are 
encoded in the Comet program. This allows arbitrary arithmetic expressions for connnunicatiou 
frequencies without requiring the Tempo front-end to evaluate those expressions. 

Deployment: 

pcta - ctl] 
pcra - eta 
pc[3] "-   c[3] 
sun[3] <-   c[4] 
sun[2] <-   U(Si 
sun[3] <- fet6] 
sun[2] <-  r[7] 
sun[5] <-  r[8] 
sun[l] <-  r[9] 
sun[31 <-   r[10] 
sun[4) <-  rCll] 
sun[6] <-  r[12] 

6.2    Comet Program 

The output of the translation stage is a COMET program. That progiam relies on Constraint 
Programming technology to solve the deployment problem optimally. Constraint programming 
delivers a complete solution method. Constraint programs revolve around two components. A 
declarative componenl state the discrete decision variables, the constra nts that every solutions 
must satisfy and the objective function. The second component focuses on the specification of a 
tree-search process revolving around an implicit enumeration. 

The TEMPO translator for COMET produces a complete model that features both the declarative 
componenl and an instantiation of a search template. That template takes advantage of the prop- 
erties conveyed through the annotations such as the equivalence classes (specified in the equivalent 
section) among nodes (o implement a symmetry breaking procedure thatconsiderably reduces the 
running time. 

As with equivalent and support, the generated COMET code varies depending upon whether or 

not bandwidth constraints arc included in the deployment specification. Five different interpreta- 
tions of the bandwidth constraints were considered. 

• A single path is used between each pair of nodes. 

• A single path is used between each pair of components. 

• A single path is used for each transition. 
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• A single path is used for each message. 

• Multiple paths may be used for a single message. 

We chose to use a single path between each pair of components since that option most closely 
embodies the concept of establishing a connection belweou components. Subsequent versions of 
the deployment plug-in may include other types of bandwidth constraints, or even include coimnn- 
uicalion load balancing amoug the connections. 

Performance-wise, the programs generated with the help of the TEMPO translator are more than 
competitive with hand-written programs. When applied to the ESDS deployment, the generated 
program is, to this date, the most offcrtivo way to solve the problem. The effectivoncss of this 
approach, when compared with modern mixed-integer programming solvers, is reported in [2'2\. For 
the ESDS example in Section 5.3, the COMET program finds the optimal deployment ;ipproxhnately 
20 times faster than CPLEX version 11 and 25,000 times faster than the hand-coded C program 
reported in [1]. 

6.3    Tempo Language Restrictions 

Each of the Tempo Toolkit plug-ins place some restrictions on the Tempo language constructs 
which are supported, and the deployment plug-in is no exception. First, since the components 
and nodes must be enumerable, the contents of their where clauses currently are limited to range 
sets of type Nat and the /\ operator, an in c[i.,j\ where i \in 1..G /\ j \in 1..6. Second, nested 
composite automata are not supported, pending identification of distributed systems that require 

this modeling complexity. 
Tempo specifies the comnnmication among components implicitly; each output transition is 

linked with all input transitions having the same name and matching parameters in other com- 
ponents. One of an output transition's parameters often specifies an identifier for the component 
with the matdung input transition. This is particularly useful for applications using arrays of 

components. 
Unfortunately, this implicit linking through parameter values makes it extremely difficult for 

the Tempo deployment annotations to match output, transitions with input transitions at compile- 
time as needed, rather than run-time. The current annotations use explicit, rather than implicit, 
transition matching as a result. For example from Figure 2, a2.send -> hZ freq 10; gives the 
frequency of the send output transition of (i2 when it is linked with the send input transition of 
63, and td.gossip -> bi,b2.b'i freq 5; gives the frequency of the gossip output transition of al when 
it is linked with the gossip input transitions of &1, 62, and 63. The downside of this approach is 
that the Tempo front end can only do limited error checking. In the first example, the front end 
ensures that a2 and 63 have send transitions of the proper type, but it does not ensure that the 
transitions actually will link in a run-time setting nor does it ensure that there aren't additional 
send input transitions in other components which also will link with the output transition. An 
alternate connnunicatton syntax being considered is (i2.send{_.,3) freq 10;, which implicitly links 
the parameter 3 to a parameter of type const in the send input transition of component 63. 

7    Solving deployment models 

This section describes the optimization model that one obtains from the TEMPO translator when 
it is applied to the Eventually Serializable Data Service applicatibn. The section starts with a pre- 
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senUilion of the abstract model fuiluwed by its incarnation in COMRT as    cunstraint proyrannnin^ 
model. 

7.1    The Abstract Model 

Tlie input, data consists of 

• The set of software modules C. 

• The set of hosts A'. 

• For each component; the subset of hosts to which it can be assigne::. In the following. 5Cin is 
a boolean variable equal to true if and only if component c can be assigned to host n, 

• The network cost is directly derived from its topology and expressed with a matrix li where 
/i, j is llie minimum number of hops required to send a message fr:in host i to host j. Note 
thai hiji = 0 (local messages are free). 

• The message volumes. In the following, fa£ denotes the average fi?qnency of messages seal 
from component a to component b. 

• The separation set Sep which spcciiics that the components in each S G Scp must be hosted 
on s different servers; 

• The co-location set Col which specifies thai the components in eac 5 & Col must be hosted 
on the same servers; 

The decision variables xc are associated with each module c e C and r,: — » if component c is 
deployed on host n. An optimal deployment miinmi-/es 

EE/^'^ 
subject to the following constraints. Each component may only be assigned to a host that supports 
it 

VceC : .Tce {i e JV|SCI1- i}. 

For each separation constraint 5' e Scp, we impose 

Vi,j 6S : t#j =*JCj /xj. 

Finally, for each co-location coiisliaint expressed over a subset of compo-.ents S £ Col, we impose 

Vi,j e 5 : x, — XJ. 

7.2    The CP Model 

The COMRT constraint program generated by TEMPO for the Eventually Serializable Data Service 
Deployment Problem is shown in Figure 10. We review it's main compoi -^nts. 
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i range Caps — l.-iibCap; 
3 range Colors - l..nbColors; 
i range Orders ■- l..iibOrdcrs; 
s range Slalw — L.nbSlatiS; 
s int capacit ic^lCaps] -- ...; 
r, int \u:iglii(Or.!erfi| - ...; 
7 inl r,ol or [Orders] -...; 

B set{int} ri)lorOrilt;rs[c in Colors] = filtcr(Q in Orctcrs) (coimfo) == c); 

n int maxCap -- rnax(i in Caps) capacitics[ij; 
12 int lossfr in 0,.iiiuxCap] — min(i in Caps: capacilioa[i] >- c) capacitics[ij - c; 
■a 
HS^vet<CP> in(): 
is var<CP>{int} x[Ordcrsl(iii,Slabs); 
ir. var<CP>{int} l[Slal)s](in10..inaxCap); 

is mininiize<m> 5uin{s in Slabs) lo.ss[i[s]] 
i!f subject to { 
3ir       III. |K>sl(imiilikiiapsack(x, weight,1}); 
2i       forall(s in Slabs) 
72 iii,[Mtsl(suni(c in Colors) (or(o in coloiOrdcrsfc]) {x[o| —— s)) <= 2); 
33 } using ( 
24       rorall{o in Orders) by (x[o).gclSizc{),-weiglit(o]) { 
2i int ins -- inax(0,inaxBoiiiid(x)); 
2r, tryal!<ni>{s in Slabs: s <- ms + 1) 
2T in.label(xH,s); 
2!- onFailure 
» iii.diff(xH,5); 
»       } 
«)  

Figute 10: The Coiislrahil-Prograiiiiinng Model in COMET 

7.2.1  ■ The Model 

The model is depicted in lines 1-21 in Figure 10. The data declarations arc specified in lines 2-10 
and should be self-explanatory. The decision variables are declared in line 10 {they are the same 
as in the ESDS model given earlier): variable x[c] specifics the host of component c and its domain 
is computed from the support matrix s. 

The objective function is specified in lines 12-13 and eliminates the diagonal elements (since 
/i, ■ = 0 for every i € JV). The CP fonnulaLion features a two-dimensional dement constraint since 

the matrix h is indexed by variables. Lines 15-18 stale the co-location constraints: for each set S 
(line 15), an element ci G 5 is selected (randomly) and the model imposes the constraint xCl = XQ 

for each other elements eg in 5. Lines 19-20 state the separation constraints for every set in Sep 
using alldifierent constraints. The onDomains annotations indicate that arc-consistency must be 
enfoiccd on the equations and alldillnent constraints. 

It is interesting to discuss the pruning performed by the objective function when an upper bound 
is available. In COMET, the multi-dimensional element constraints are inipleinented in terms of a 
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table T which contains all the tuples 

{a.h,liail.)     {a.be C). 

COM8T also creates a new variable (T(i/, foi" each term ha^-j in the abjective and imposes the 
constraint 

on which it achieves arc consistency. With this in place, the objective tl en becomes 

B€C6eC 

7.2.2    The Search Procedure 

The search procedure is depicted in lines 23 29. It is a variable labeling witb dynamic variable and 
value orderings. Lines 24-28 are iterated until all variables are bound (line 23) and each iteration 
nondeterministically assigns a variable x[i] to a host n (lines 25-26). 

It Is interesting to review the variable and value orderings which are uotivated by the structure 
of the objective function 

In the objective, the largest contributions are induced by assignments 0/ components i and j that 
are communicating heavily and are placed on distant hosts. As a result, the variable and value 
ordering are based on two ideas: 

1. Assign first a component i whose communication frequency /|i,jf] with a component j is 
maximal (line 24); 

2. TVy the hosts for component i in increasing number of hops requ red to communicate with 
component j (line 25). 

The variable selection thus selects lirst components with the heaviest (single) communications, 
while the value selection tries to deploy the components to minimize the mnnber of hops. 

Arc-Consistency for fitering The CP model used here is quite elegant since it enforces arc 
consistency on all constraints and the objective function. One may wonder whether arc consistency 
is critical in ESDSDPs or whi'tlicr a wi-akcr form of consistency is suHcient. Table 1 depicts a 
comparison of a bound-consistency model and an arc-consistency model on a collection of synthetic 
benchmarks. The second and the third column report the results of the CP solver when bound 
consistency is enforced on the. objective, while the fourth and the fifth columns report the perfor- 
mance for the arc-consistency model. The experimental results show a dramatic loss in performance 
when arc consistency is not used and underline the importance of usin.; sophisticated constraint 
programming techniques to deliver the desired performances. 
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Algo cr •BC CP-AC 

Bencb ■i\,.,, #CHPT Ti:rl<j #CHPT 

SIMPLE2 1.20 7582 0.23 2510 

SIMPLE1 c.u 46874 1.38 15408 
SIMPLEO 37.21 307305 7.75 87491 

fc3c5pc 94.81 748118 2.76 14597 

fe3c5i>c5 639.87 4705378 4.04 24130 

fe3c.(isiiu 100.39 1330353 6.29 30621 

fe3cGPc5 1039.20 7238005 3.54 18547 

fe3c7pc5 2107.10 14440831 7.83 35726 

re3c7pc5CS 1910.50 12940789 7.77 35312 

fe3c7pc5CST 1286.37 8557292 13.68 70495 

feSdist 93.64 839781 4.10 20750 
SCSS1SNUFE 02.80 482001 43.34 392028 

SCSS2SNUFE 00.47 442373 60.43 380117 

SCSS2SNCFE 30.41 246228 50.83 322472 

HYPERS 7053.00 33628203 65.07 123213 

HYPER1G 34570.90 150832040 237.53 513051 

Table I: The Value of Arc Consistency for the CP Model 

Exploiting Value Symmetries As discussed earlier, some instances of the ESDS deployment 
problem featnre a variety of symmetries, which can be removed to improve the search performance 
without sacrificing optimality guarantees. Techniques for removing these symmetries during search 

are well-known {see, for instance, [33|). 
Figure 11 iUustrates how to enhance the search procedures presented earlier with symmetry 

breaking. The sets of equivalent hosts are supplied as additional input data and are used to deter- 
mine the set of non-equivalenl hosts (lines 12}. Each iteration of the search procedure calculates 
the set of nodes that are bound in line G and the set of nodes that are eligible to host the next 
component with lines 7 through 11. Line 7 starts by initializing the scarchNoiles, to all the nou- 
equivaleut nodes plus all the nodes on which components are already deployed. The loop in lines 
8-11 simply adds to scarchNodes one slill unused node from each equivalence class. 

8     A Formal Treatment of an Abstract Channel Implementation 
Using Java Sockets and TCP 

Our earlier research substantiates our ability to implement practical techniques for generating dis- 
tributed rode automatically, starting from formal Input/Output Automata (IOA) specifications in 

Tempo. Namely, we have developed an aiitomaled code-generator for IOA programs in a specific 
node-chamiel form that produces Java code running over MPI on a local area network (30, 31), and 
have used this to generate running versions of a variety of basic distributed algorithms [lO]. We have 
also developed two complete distributed systems by manually (but systematically) translating for- 
mal IOA specifications to distributed code, using C (-+/MPI to implement an eventually-scrializable 
data service [7), and using .lava/sockets to implement a reconfigurable atomic read/write memory 
service, called Rambo, e.g.. see [2G. 11]. The methodology that emerged as a part of the develop- 
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i set{set{int}} Rq = ...; //The. eqoivokxA host sr.fs 
3 set{int} NolEtj — ...: //The rion -vqiriinilnnl Ueats 

i wliile (aum{k in C) x[k].boiiiid() < C.grlSi/x'O) { 
seIectMax((i in C: !x[al.boLiiid(), b in C)(f[a,b]) { 

r, set{int} IxvundNodw = collect(s in C : x[s].bou[Ki()) x(si]; 
T sctjint) yoardiNodes ~ nolEq iinion(union{{! in Rq) e inter bomidNodt^); 
e forall (e in Eq) { 
<i set{int} Ion = c \ boimdNodea-: 

10 if (card (fen) > 0) sciucliNadcy.inycrKniin (n in fen) n); 

} 
u int k =■ niin{k in N : x[c2],nicmljcrOr(k)) k; 
i\ tryall<ni>(n in seardiNude,s : x[cl].ni(!inbcrOf(n)) by (li(ii, k|) 
ii cp.post(x{H] == n); 
is onFailure 
i-i cp.post.(x[aj !« n); 

} 

Figure 11: Tlie Search Procedure with Value Symmetry Breaking 

ment of the latter system (Rauibo) will be the basis for prototype imiilemeiitatiou and eventual 
production-grade compiler for Tempo. 

As a part of this cfl'mi, wo have addressed the problem of mapping Tempo-specihed thaunels 
used in dynamic distributed systems to executable code en route to piatotyping automated code 
generation. 

Abstract models and specifications can be used in the design of (Bstiiliuted applications to 
formally reason about their safety properties. However, the benefits of using formal methods are 
often negated by the ad hoc process of mapping the functionality of an abstract specification to 
the low-level executable code for target distributed platforms. We have developed the first formal 
specification of an abstract asynchronous communication channel witli support for dynamic creation 
and tear down of cominunicatiou links between participating network nodss, and its implementation 
using Java sockets. The specifications are expressed using the Tempo fornialism, and it is proved 
that the resulling implementation preserves the safety properties of tl e abstract channel. This 
approach can be used to implement algoritlnns for dynamic systems, where conmnmicating nodes 
may join, leave, and experience arbitrary delays. This directly benefits automated code generation 
we are targetting in this project, and we plan to include an implemeulat on of such channels In the 
Tempo toolkit as a standard building block for dynamic distributed systems. Our results appear in 
the proceedings of 2008 IEEE Inlcniaiional Symposium on Network Ccinpulintj and Applications 
[121, 

8.1     Rationale: towards code generation 

The increasing complexity of distributed software systems makes reasonii g about their behavior ev- 

ermore challenging. Abstract specifications of distributed systems simplify formal reasoning about 
their safety guarantees, and several formal systems have been used for this purpose. However, this 
abstraction makes challenging the mapping of the high-level specificatio i to the facilities available 
in a target programming language. 
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TranslaUon of abstract specifications into executable code for target envirounients is imrticularly 
cbnllengiiig in tlic case of connmmication channels. Distributed services are designed fur a speeitic 
connuunication model, where the safety properties of the comnumication links used by service 
directly impact the safety guarantees of the overall system. Commoii practice often foregoes the 
rigorous safety arguments about the cbaimel implementation and its interaction with the system 
components. Hence, it is not clear whether the resulting implementation is correct with respect to 

its high-level specification. 
The key contribution of this work is the first speciiication of an abstract asynchronous commu- 

nication channel with explicit support of dynamic creation and tear down of communication links 
between the network nodes, ajid its implementation using Java sockets and TCP. For simplicity, 
our solution associates a unique socket with each communication link between a pair of nodes, 
and thus it assumes that once a node closes a connection with some destination, it will not try 
to subsequently reopen it. Our solution can be naturally extended to incorporate multiple, con- 
current, point-to-point socket connections. We prove that the implementation preserves the safety 

guarantees of its abstract, .specification. 
In this work we use the Input/Output Automata model to specify and reason about the behavior 

of distributed algorithms. A plethora of algorithms have been described using this model. We refer 
to the language used to describe systems in this model as IOA. It is of practical interest to be able 

to correctly specify and translate IOA models into executable code. 
Tauber [30) wrote the IOA compiler, which uses a target programming framework consisting of 

.Java and MPI The compiler design is proved correct to ensure that the safety guarantees of the 
source specification are preserved by the resulting .lava/MPI implementation. However, the choice 
of MPI limits the domain of systems to those that do not encounter failures and arbitrary message 
delivery delays, and that do not have nodes joining and leaving during execution. Given that our 
approach allows failures, delays, and dyuannc node participation, another direct application of 
the work presented here is an alternative method of implementing robust communication channels 
using TCP and Java sockets. Note that both methods of comnumication, i.e., Java/MPI and 
Java sockets/TCP; may be employed by a compiler, where the first can be chosen for failure-free, 
performance-oriented applications, whereas the second is chosen for dynamic applications using 

asynchronous channels. 

8.2     Technical development: channel implementation 

We present an asynchronous communication channel that connects applications running on any 

number of networked machines. Each sender node may create couneclions with any number of 
receiver nodes, and either the sender node or the receiver node may gracefully close the connection. 
Messages may be lost, delayed, and delivered out of order. The current model supports only a 
single socket connection between any two nodes. Thus, once a connection between two nodes is 
established and subsequently closed, it cannot be reopened (unless it can be determined that the 
socket can be reused). Allowing multiple, possibly concurrent, socket connections between two 

nodes is a straightforward extension to this model. 
We first defined an automaton, called ABSCH, modeling the behavior of a many-to-many, asyn- 

chronous communication channel that allows nodes to spontaneously connect and disconnect. The 
connections are closed in a graceful way. ensuring that messages that are in-transit are delivered 
before the connection is closed. The signature, state, and transitions of ABSCH are depicted in 

Figure 12. 
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Signature: 
Input: 

send(i».tj). where me A/, i,j e / 
receiverListeningfj). wtiere j € / 
sendefOpen(!, j). whore i,j€ I 
receiverStopListening(_(), where _; € / 
receruerCIose(i, j}, where i, j e / 
sen(ierClose{i,j), whore i.j £ / 

StBtGt 
»/iTssrtf/c*, subscl of A/ X / x /, initiaily fl 
listeniny, suli.sct of I, iiiilmllv 9 
xlalun : / x / — {closed, connecting, connected}, iniiinlly nil c 
cmjUyiri'i ; / x / --• Boolean, inilially all false 

TVa. ^tj..,, 

inpul send(i.i,i1j) 
KfTccl: 

\t stntii.i(i,j) ^ closed A-'cm;^!/iHy(t,j) Hicii 
incxs'igns ■— vir.ssagcsU {{'",',j)} 

Listening(j) 
Rfted 

lislwiuij — fwteinuii U {j) 

inpul sendefOpen{t,j) 
Effect: 

stnhn^i.j) — connecting 

input receivefStopListening(j) 
Effect: 

Itsicniiig — fbteniag \ {j] 

inpul (eceivetClcise(i, j) 
Effect: 

inessigej) — messages \ [{n 
staliis(i,j) ■— closed 

inpiil senderClo^t, j) 
modtz 

tviptvnig(i,j) — true 

Output: 
receive(rn,il j), where m fc .U and i,j e / 
respReceiverLislening(i.j), v icn- I.J £ / 

Internat: 
senderClosing(i, j), where t, j £ / 
lose(«i), where m £ A/ 

onlpnt receive("i,i. j) 
Precondiiion: 

(m:i,J}C meMOfia 
s(n(u.i(i, j) = connect id 

lllfci: 
fues^apej •— Fiicis/iijcr \ {("M.j)} 

ouiput fespReceiverUster<ng(i, j) 
Precondition: 

slaliij(i,j) = connect tig 
j € lislening 

Effect: 
slaliis(i,j) — connected 

internal senderClosing(i,j 
Precondilion: 

emptpmg{i,j) 
Vfm, a, r) £ messQffejr, a jt i A r / j 

Effect: 
iIn(tM{i, j) — closed 
em;ityiiig(t, j) •— falsa 

intornai lose(Tfi) 

{m,I.J) € tnessaga 
Effect: 

.sage. \ [{.n, i,j)] 

Figure 12; Signalure, slato. aiid transitions of the abslract inany-to-inun'' ouloniaton, AUSCH. 
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Figure 13: Nude aiiLomaLoii. 

Next, we developed an automaLon, called JVM-TCPCH, that models the behavior of the Java 
interface to a communicalion channel using TCP. We do not model TCP itself or the Java Virtual 
Machine (JVM) environment; instead, we concentrate on the high-level behavior and the specific 
interface with sockets via the Java libraries. 

Following Tanbers approach [30], we then establish a mediation between the sending appli- 
cation, the communication channel, and the destination application. The mediating antomata 
are mapped to the nodes of the corresponding application automata, as illustrated in Figure 13, 
showing a node automaton composed of an application automaton and mediator automata, where 
the mediator automata interact with the TCP sockets Lhrouglt the JVM-TCP channel interface. 
We refer to the composition of the JVM-TOPCH automaton with the mediating automata as the 
COMPCH automaton. 

The method of forward simulation [Hi] is used to prove our main result that COMPCH implements 
ABSCH, hence preserving the properties of our abstract asynchronous cliamiel. The full technical 
development can be found in the available technical report. The main result is formally stated as 

follows. 

Theorem 1  The seL of traces of COMPCH is a subset of the set of traces of ABSCH. 

9    Conclusion 

This results documented in this report were developed under Phase I STTR contract for topic 
AF07-T019. This project advanced the state of the art in formal modeling and engineering of 
complex distributed systems. The project included: (a) modeling language that can be used to 
represent complex distributed systems, theory and methodology providing mathematical basis for 
modeling systems and reasoning about their properties, (b) extensible and scalable analysis tools 
that can be used to validate correctness and performance properties, and synthesis tools for produc- 
ing eflicifnt deployment schemes of the software romponcnts in target networks subject to specified 
constraints. The project extended the methodology to incorporate additional means for reasoning 
about probabilistic and hybrid systems. The project extended an integrated development environ- 
ment, called Tempo, for modeling, synthesis, and analysis of distributed systems, developed tools 
for efficient deplnvment of the software components in target networks, and explored a methodology 
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(or generaling code. 
CurreiU work on fuluie exteuyious for the Tempo loo!sel and ihe overall inelliodoiogy is funded 

by XSF, and includes work on distributed code generation from Tempo specifications and opti- 
mization of distributed system deploynienl in target network platfunns. 

Currem releases of Tempo toolset for Linux, Windows, and OSX/PPC platforms are availabk" 
at www.veromudo.cuni. 
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